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Abstract

Research has shown that neural networks can be
used to improve upon approximate dynamic inversion
controllers in the case of uncertain nonlinear systems. In
one possible architecture, the neural network adaptively
cancels linearization errors through on-line learning.
Learning may be accomplished by a simple weight
update rule derived from Lyapunov theory, thus
assuring the stability of the closed-loop system. In this
paper, the authors discuss the evolution of this
methodology and its application in a bank-to-turn
autopilot design for an agile anti-air missile. Additional
consideration is given to robustness of the proposed
controller. First, a control scheme based on approximate
inversion of the vehicle dynamics is presented. This
nonlinear control system is then augmented by the
addition of a feedforward neural network with on-line
learning. Finally, the resulting control law is
demonstrated in a nonlinear simulation and its
performance is evaluated relative to a more traditional
gain-scheduled linear autopilot.

Introduction

Advances in fighter aircraft technology continue to
create new challenges for designers of anti-air weapon
systems. The introduction of low-observable aircraft has
increased the need for small, lightweight missiles. This,
in turn, has led to various control problems associated
with air-breathing propulsion, asymmetric airframes,
and greatly reduced aerodynamic control surface area.
Similarly, the advent of supermaneuverable aircraft has
motivated efforts aimed at expanding the missile’s flight
envelope to include high angle of attack conditions.
Accordingly, some proposed next-generation missiles
employ nonaerodynamic, propulsive control effectors
similar to those associated with supermaneuverable
aircraft. These so-called “agile” missiles possess
enhanced range as a result of their ability to execute
rapid propulsive heading changes during the boost
phase. Furthermore, these weapons can be deployed
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during high angle of attack maneuvers, and may even
engage targets in the rear hemisphere relative to the
launch aircraft.

The dynamics of an agile missile flying in bank-to-
turn mode at a high angle of attack are inherently
nonlinear and may vary rapidly with time. Furthermore,
these dynamics are highly uncertain since aerodynamic
data for vehicles operating under such conditions is
difficult to obtain and may in fact be a poor
approximation to the actual dynamics. These and other
concerns have prompted researchers to look beyond the
classical methods which have historically dominated the
field of missile autopilot design and to robust,
nonlinear, and “intelligent” control.

Most nonlinear control techniques are based on
linearizing the equations of motion by the application of
nonlinear feedback. Known variously as feedback
linearization or dynamic inversion, this method relies
heavily on knowledge of the plant dynamics. An early
application of this theory to the missile autopilot design
problem is found in Ref. 1, while Ref. 2 presents a more
sophisticated approach involving variable structure
control. More recently, neural networks have emerged
as a means of explicitly accounting for uncertainties in
the plant dynamics. Their on-line learning and
functional approximation capabilities make neural
networks an excellent candidate for this application.
Ref. 3 is one example in which neural networks are
investigated for nonlinear control of missiles.

This paper concerns a neural network based
approach to direct adaptive control of nonlinear systems
which originated in Ref. 4 and was further developed in
Ref. 5. In the proposed architecture, a simple dynamic
inversion controller approximately linearizes the vehicle
dynamics. This controller is augmented by a neural
network which acts to improve the linearization by
adaptively canceling inversion errors in real-time. The
neural network implementation features a stable on-line
learning algorithm derived from Lyapunov theory.
While Ref’s. 4 and 5 dealt specifically with fighter
aircraft and helicopter applications, respectively, the
work described in this paper adapts these previous
efforts for use in control of agile missiles. The result is
an autopilot which combines the best features of
dynamic inversion, neural networks, and adaptive
control to potentially increase the effectiveness and
versatility of tomorrow’s missile systems. .
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The preliminary study presented in Ref. 6 revealed
that neural networks are indeed capable of attaining
sufficiently high learning rates to make adaptation
feasible during even the most demanding aerial
engagements. In fact, previous work documented in
Ref. 7 shows that the methodology considered here
compares favorably to traditional gain-scheduled linear
methods for this application. This paper summarizes the
results of earlier research with additional comments on
robustness.

The paper begins with a review of the proposed
controller architecture and its evolution to date. The
methodology in question is then applied to an agile anti-
air missile autopilot design problem. First, the baseline
control scheme consisting of an approximate inversion
of the missile’s six-degree-of-freedom nonlinear
dynamics is presented. Neural networks are then
designed to enhance this nonlinear controller.
Simulation results comparing this technique to a
traditional ~ gain-scheduled  implementation  are
presented, and the effects of neural network topology
are investigated. Finally, conclusions and future
research directions are discussed.

Control Design Methodology

Consider a block-triangular nonlinear system with
the following structure

Xy =f1(X1)+g1(X1)X2 )

Xy = fz(xl,xz,u)

where X;,X,,u € R" and g;(x,) remains nonsingular for

all x;. For reference, a block diagram of this system is
included in Fig. 1.

fi(x,)

u 1%, 4 T 1%
- fz(Xl,Xz,l]) e > g,(xl) n ry >

Figure 1: Open-Loop Nonlinear System

Approximate Nonlinear Control

Suppose that the dynamics of the x; subsystem are
well-known, but the nonlinearity f, is only known
approximately. Furthermore, suppose a stabilizing
controller o;(x,, t) for the x; subsystem with x, as input
is also known. One example is the dynamic inversion
controller described by

oy (xp,t) = gl—l(xl)[KI(xlc ~ %)+ Xpc(t) - fl(xl)] €3
where x. denotes the command vector. Note, however,

that o;(x;, t) need not be an inverting controller. If, for
instance, the plant dynamics include so-called

“beneficial” nonlinearities, these terms need not be
canceled by the nonlinear feedback. This is “lean”
nonlinear control as described in Ref. 8 with regard to
integrator backstepping. Defining the desired error
variables,

% = x1(t) - %y
- 3
Xy = oy (xp,t) = x5
we then close the loop on the x; subsystem, writing
X = -KiX, + gi(x)%,
(xa) @

X2 = fz(xl,X2,u)

A technique derived from integrator backstepping
will now be used to construct a stabilizing controller for
Eq. (1). We first turn our attention to the x, subsystem.
In Eq. (4), the x, subsystem may be rewritten as

)’(2 =V
®)

v = f,(x),X5,u)
where v(t) €e R" is a pseudo-control input. Provided
that the mapping f,(x,,x,,u) is invertible and full-state
feedback is available, the definition of v above provides
a linearizing transformation of the control. The inverse
transformation is expressed by

-1
u=f, (xl,xz,v) ©6)

and must be computed in real-time when the control is
implemented. If the mapping f, is known and its inverse
is computed accurately, then the system is exactly
linearized. Since f, is uncertain, exact linearization is
impossible and dynamic inversion results in:

Xy = V+A(X], Xy, V) 7

where
A(x1,%5,v) = £(%1, X5, 8) = £ (x1,%5,8)  (8)
and A:R"xR"xR" - R" is a nonlinear mapping
representing the inversion error. In the above equation,
i= fi‘(xl,xz,v) describes the approximate inverse

mapping. Fig. 2 below illustrates this approximate
dynamic inversion process.

Model Inversion

Figure 2: Approximate Dynamic Inversion

In the ideal case, integrator backstepping may be
used to construct an expression for v(t) which stabilizes
the errors X, and X,. When there is non-zero inversion

error, this expression is augmented by an adaptive term
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which compensates for the error. This yields the
following expression for the pseudo-control v(t):

V() = 4g] (%)%, + 6y (x),t) + Ko%K, - 9 (0)  (6)
where V,4(t) is the adaptive control contribution to the

pseudo-control. The first term in Eq. (6) is included to
offset coupling between the X, and X, dynamics. It has

become commonplace in applications of this type to
reduce such coupling by enforcing time-scale separation
between X; and X,. In that case, the first term in Eq.

(6) may be neglected. The second term is similar to the
“command derivative” term in model-following control,
and is necessary to achieve tracking of arbitrary
continuous trajectories. For slowly varying commands,
this term may also be neglected. Fig. 3 depicts the
adaptive control architecture for the x, subsystem.

. A%y, x5.v)
gl (x1)%) + 6, (x,.1) e

Neural
Network

Figure 3: Adaptive Control Architecture

Neural Network Based Adaptation

In Ref. 4, the adaptive control is assigned the form

N
Vag, () = zwij(t)ﬁij(xl’xb V)
j=1 Q)]

= w?(t)ﬁi(xl’xbv)

for i =1,2,...,n with scalar weights Wi (0 and the N-
dimensional set of basis functions Bij(x,x,v). This

approximation to the inversion error may be realized by
any neural network which is linear in its adjustable
parameters, often referred to as a “single-layer”
network. One common architecture which satisfies this
condition is the Sigma-Pi network depicted in Fig. 4.

X1 X2 X3 Xy X; X2 X2 X3 X3 X; X2 X2 X3 X3 X

Figure 4: Sigma-Pi Neural Network

Using Lyapunov stability theory, it can be shown
that the adaptive control achieves global asymptotic
stability when the weight update rule is chosen as

& = _YiiZiBi(xl’XZ’v) v |§2i’ > &
b 0 VR | < (®)
1i=12,..n

where 7y; >0 is an adaptation gain, or learning rate,
and ¢€; denotes the magnitude of a deadzone introduced
as an element of the stability proof as in Ref. 4

Note from Fig. 3 that the network input v depends
on the current network output. Thus, a critical
assumption in the stability proof involves the existence
of a fixed-point solution for the output V,4. Such a

condition is guaranteed when bounded basis functions
B; are used. Furthermore, when a stable fixed-point
exists, a simple iterative scheme may be employed to
compute the network output. A deadzone is required to
account for the fact that the network is incapable of
exactly representing the inversion error (A) by
employing a finite set of basis functions.

Robustness Modifications

Throughout the development presented above, exact
knowledge of the order of the open-loop plant is
implicitly assumed. While the design is adaptive to
uncertain nonlinearities, no allowance is made for
unmodeled dynamics. Consider, for example, the open-
loop system augmented by unmodeled dynamics A(s) at
the input

5(1 - fl(Xl ,t) + gl (Xl ,t)X2
X, =f,(x,7,t) )

U= (1+pA(s)u
with i > 0. Although such a result is beyond the scope

of this paper, it has been shown that under certain mild
assumptions, the control law described above can be
modified to achieve robust stability for sufficiently
small values of the parameter w. This is accomplished
essentially by introducing additional dynamics into the
nonlinear feedback used to compute u in Eq. 6. The
reader is referred to Ref. 9 for details.

Missile Autopilot Application

In this section, the neural network-based adaptive
control methodology described above is used to design
a nonlinear autopilot for a next-generation anti-air
missile depicted in Fig. 5. This vehicle is described in
greater detail in Ref’s. 10 and 11. In the current
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scenario, the objective is to design a bank-to-turn
autopilot which tracks external guidance commands in
angle of attack and bank angle while holding sideslip
near zero.

Forward RCS Aft RCS

N ° e
i

Control
Surfaces

Figure 5: Agile Missile Configuration

Approximate Dynamic Inversion

The motion of a symmetric missile about its velocity
vector may be described by the following equations.'

V =(a, cosa +a, sinc) cosp + a, sinp
—a, sino + a, cosal (10)
V cosf
(a, cosou+a, sina)sinB — a, cosP
v

0 =q—(rsino + pcosar)tanf +

B=psinot~rcoso —

where V, o, and § denote airspeed, angle of attack, and
sideslip angle. Here, ay, ay, and az are the body-axis
components of acceleration (including gravitational
effects) while p, q, and r are the body-axis angular rates.
The moment equations have the form

+[1—i—“Jpr (11)

e N (1 _Ii]pq
I, Iy

where L, M, and N represent aerodynamic moments
about the body axes. Finally, Ixx and Iyy are rolling and
pitching moments of inertia, respectively, and are
assumed to have nearly constant values.

In order to simplify roll control in bank-to-turn
flight, we now introduce an aerodynamic bank angle (u)
about the velocity vector. The bank angle dynamics are
described by Eq. (12).
L.lz[pcosowrsinocj (ay sino—a, cosar) tanfB (12)

cosfB \'

The following development assumes the presence of a

guidance law which commands angle of attack, sideslip
angle, and ‘bank angle. There are several possible

alternative choices for the roll command, including
body roll angle (¢), body roll rate (p), and stability-axis
roll rate (ps = pcosot + rsinc).

Introducing the more compact notation,

o p
x=4Br ©=1q (13)
u r

the last two of Eq’s. (10) may be rewritten along with
Eq. (12) as
x=a; +T(x)® (14)
where T(x) and a; are given by Eq. (15).
—cosottanf} 1 —sinotan

sino 0 —cosa
cosasecf O sinosecP

T(x)

—a, sina +a, cosa
Vcosf (15)
—(a coso+a, sina)sinB +a, cosp
v
(ax sinot—a, cosot) tan
v

The autopilot design methodology presented above will
now be applied to the system described by Eq. (14) and
Eq. (11). First, body-axis angular rate commands are
computed from Eq. (2) as follows:
©, =T (x)(K,X + %, —a;) (16)
The gain matrix Ky may be chosen as diagonal with
positive elements. An integral term may also be
included in Eq. (16), but has been omitted for
simplicity. No adaptive control is necessary at this stage
of the design, since the nonlinear dynamics are
sufficiently well-known. Eq. (16) makes use of
available acceleration and velocity information, as well
as estimates of angle of attack and sideslip angle which
are constructed from inertial data. The accelerometer
measurements are filtered and biased appropriately to
account for gravitational effects. Note that the matrix
T(x) may be inverted, since it is nonsingular for all o
and B except B=n/2, which should not be encountered in
bank-to-turn flight.
Next, a first-order filter is applied to the guidance

commands (o, B., and [ ). Its outputs are the

af=

filtered commands and their rates.

O ‘ (:xc
X = Bc X = pc amn
He He

At this point in the control design procedure, we turn
our attention to the body-axis angular rates. First, a
pseudo-control input, v, is defined by
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0=V

v= f(x,w,é) (18)

where the function f(-) refers to the right-hand-side of
Eq. (11). The missile’s body-axis angular rate dynamics
must be approximately inverted to determine the
required control input. For an approximate inversion,
the body-axis moments are represented linearly:

L=L=LgB+L,p+L,r+LgS, +Lgd
M=M= M,0+M,q+Mgd, (19)
N=N=NgB+N,p+Nr+Ngd, +Ng,

The body angular rate dynamics of Eq. (11) are then
rewritten as

8
P
o =1{x.0.8)=F(x0)+ B3, t+A(x0,8) @0
5,
where f is approximated linearly by introducing
ﬁ 0 L&
E IXX IXX
A P A M
F={F ' and B=| 0 2 o | @D
A I
: vy
_NSP 0 Nar
L Ixx IYY N
with
. LgB+L p+Lr
o=t T (22)
I
XX
~ M,o+M 1
Fq=°‘—“q+ 1—-2 |pr (23)
Iy Iy,

. NgB+N,p+Nr (
F =

I
+| 1= i]pq (24)
I)’Y IY)’

Performing the approximate dynamic inversion, the
control input (d ) is then given by Eq. (25).
S:ﬁ‘l(v—ﬁ) (25)

The next step in the control design is the
computation of the pseudo-control input (v). Here, the
commands generated by Eq. (16) are filtered to obtain

Pe| . |Pe
O =94cp O =14, (26)

I f,

which are used in Eq. (6) to obtain

v=K B+ 0, —Vy 27
where V4 is the adaptive control component which is
included to cancel nonlinear inversion errors. As in the

outer loop, K is a diagonal matrix of positive gains and
the error variable ® =®_,—® has been introduced.

Note that we have neglected the coupling term
+g] (x,)%, from Eq. (6). We will instead choose K, and

K, to impose time-scale separation upon the closed-
loop error dynamics.

In practice, the stability and control derivatives in
Eq. (20) could be scheduled as a function of flight
condition, along with trim values of the control inputs.
This, however, presumes that an accurate full-envelope
vehicle model is available. In the current
implementation, the moment coefficients are treated as
constants, shifting the burden of gain scheduling to the
neural network. The dynamic inversion control law may
be simplified further by introducing additional
approximations as simulation results warrant. The
neural network would then be required to additionally
compensate for those effects which are neglected by the
dynamic inversion.

In the actual implementation, the inputs computed
by Eq. (25) are distributed among the missile’s
aerodynamic control surfaces and RCS thrusters using
any suitable control allocation algorithm.

Neural Network Architecture

Substituting Eq. (16) into Eq. (14) and Eq. (25) into
Eq. (20), the closed-loop error dynamics can be written
as follows:

X=-K,X
. (28)

®=-K,0- ¥, +A(x,0,v)
Any simple linearly parameterized feedforward neural
network which is capable of approximately
reconstructing the nonlinear inversion error (A) may be
used to compute the adaptive contribution to the
pseudo-control. The adaptive pseudo-control input in
each channel is therefore described by Eq. (7) presented
previously. Moreover, a stable learning rule is again
given by Eq. (8).

Various neural network topologies and choices of
inputs have been considered in this study. The results
presented in the following section use a second-order
Sigma-Pi network with inputs chosen as normalized
values of x, ®, and v as well as a constant bias term.

Simulation Results

Results were obtained using the neural-adaptive
nonlinear autopilot described above in a nonlinear, six-
degree-of-freedom (6-DOF) simulation of a proposed
agile anti-air missile. In this particular simulation, RCS
thrusters and BTT guidance are only employed during

5
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Figure 8: Angle of Attack and Sideslip Responses

high-ov flight. The autopilot results presented below
therefore do not reflect the terminal stage of the
intercept, during which control is returned to a gain-
scheduled autopilot.

Fig. 6 compares this autopilot with a more
conventional gain-scheduled autopilot for a step
command of 90 degrees in angle of attack. This plot is
representative of 6-DOF simulation results for other
maneuvers, which indicate that the two controllers
achieve similar performance.

An important engagement geometry for an agile
anti-air missile is the so-called “merge” scenario, in
which the launch aircraft and the target are passing one
another as the missile is fired. In this case the missile
initially executes an agile turn at very high angles of
attack, and intercept occurs in the rear hemisphere

relative to the launch aircraft. Fig. 7 illustrates this
scenario, which takes place primarily in the local

horizontal plane.
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Figure 7: Intercept Trajectories
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Autopilot angle of attack and sideslip angle tracking
responses are depicted in Fig. 8. Sideslip angle is held
to less than two degrees throughout the maneuver. The
initial angle of attack transient response is a result of
both the nonlinear acrodynamics of the missile and the
neural network’s initial attempts to compensate for
these nonlinearities. This will subsequently be discussed
in relation to the neural network’s effectiveness for
€ITor reconstruction.

In Fig. 9, the missile’s roll angle response is
presented. Implementation concerns which are beyond
the scope of this paper dictated that the missile achieve
roll control using a redefined roll angle, neither ¢ nor .
This is merely a detail, however, and does not alter the
general control design approach.

Fig’s 10 and 11 illustrate the RCS thrust commands.
Saturation limits are activated by stressful maneuvering,
a phenomenon which has not been explicitly accounted
for in the control design process. In the pitch case, such

saturation is unavoidable. In yaw, however, high control

6
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activity is a result of the neural network canceling
aerodynamic nonlinearities. Reducing the network’s
adaptation gain (y) can alleviate this problem, but at the
price of increased levels of sideslip.

Finally, Fig’s 12 and 13 illustrate the effectiveness
of neural networks in inversion error reconstruction. In
these figures, the solid lines represent the actual value
of the inversion error A, which may be computed in the
simulation. The dashed lines represent the adaptive
pseudo-control component. When the neural network
perfectly reconstructs linearization errors, these two
quantities have equal values. In Fig. 12, however, there
are transient errors for which the network does not
compensate completely. Increasing the learning rate ()
causes the network to respond more aggressively to
these transients, but such high gains can lead to
undesirable “ringing” as the network attempts to rapidly

- cancel large transient errors. In the results presented
here, adaptation gains were chosen by starting with

2500 T T T T T T T T T
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b
g
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Figure 11: Yaw and Roll RCS Thrust
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Figure 13: Yaw Inversion Error Comparison

small values and increasing the gains until desired
performance was achieved. A different neural network
structure or choice of basis functions might enable the
pitch network to more closely approximate the
linearization error.

It is evident from Fig. 13 that the neural network
functions as desired for yaw control. This is supported
by the fact that sideslip tracking improved as y was
increased in the design process. The roll network
performs similarly to the yaw network, and a plot
depicting this has been omitted for conciseness.

Conclusions

A nonlinear bank-to-turn missile autopilot based on
approximate dynamic inversion has been proposed.
With the aid of an adaptive neural network, this
autopilot tracks guidance commands in angle of attack
and bank angle while holding sideslip angle near zero.
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A similar development could be carried out for the skid-
to-turn case by replacing the bank angle state () with

roll angle (¢) and maintaining ¢ = ¢ =0.

Nonlinear 6-DOF simulation results indicate that the
performance of the neural-adaptive nonlinear autopilot
is comparable to that of an existing gain-scheduled
autopilot. One advantage of the neural-network-based
approach is that it eliminates the time-consuming
process of designing a different autopilot at each of
numerous flight conditions. Additionally, the use of
neural networks enables the nonlinear controller to
effectively adapt on-line to uncertain nonlinear
aerodynamic phenomena which are difficult to model
for purposes of design and simulation.

Neural network based adaptive control of nonlinear
systems is a maturing technology area which promises
to be applicable to a wide range of systems. The
favorable results described here have already led to
more advanced research, including the aforementioned
robustness results as well as efforts to extend the current
approach to accommodate multilayer neural networks.
These networks feature improved approximation
capabilities over their single-layer counterparts, but at
the price of nonlinearity in their adjustable parameters.
Each of these advancements represents another step
toward the creation of a design technique powerful
enough for tomorrow’s demanding flight control
applications.
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